

Global Soil Salinity Map (GSSmap) Training on Soil Salinity Mapping

28 November - 3 December 2019 Tunis, Tunisia

DAY 1

Objective:

- (1) To understand soil salinity drivers, indicators and classification methods
- (2) To prepare country-level data for national mapping of soil salinity

Requirements:

- (1) Georeferenced national soil data (soil horizons or layers down to 0-100cm deep): EC, pH, ESP, (OC, Clay, texture, and soluble ions-so4, cl, Co3, Na)¹, administrative boundaries, water bodies, urban areas
- (2) Remote sensing images, elevation, land cover, climate, and (soil map and/or geology map, irrigated areas, hydrogeology)²
- (3) Computer at least core i5, 8gb ram, and enough storage (at least 100 GB)
- (4) Installed software: R, RStudio, QGIS, ILWIS

Output

- (1) Understanding of soil salinity and mapping requirements
- (2) GIS database for national mapping of soil salinity

TIME	TOPIC
8:30 – 9:00 am	Registration, Introductions, and Workshop Opening
09: 00 - 9:30 am	Introduction to training, expectations, and procedures
	Checklist of training requirements
9:30 – 10:30 am	Lecture 1: Basics of soil salinity (Understanding soil salinity,
	distribution, characteristics, and classification)
10:00 – 10:30 am	BREAK
10:30 - 11:00 am	Lecture 2: Input data requirements (indicators of salinity, mapping
	covariates)
11:00 – 11:15 am	Discussions on country-level data availability by participants
	Presentation of country-level data (2 slides: soil data, covariates)
	(Algeria, Bahrain, Egypt, Iran, Iraq, Jordan, Lebanon, Libya)
11:15 – 11:30 am	Presentation of country-level data (2 slides: soil data, covariates)
	(Morocco, Oman, Palestine, Sudan, Syria, Tunisia, Yemen, Mauritania)

¹ If EC is not determined from extract from saturated soil paste. Soluble ions and TSS are optional

² Soil map and/or geology map; hydrogeology and irrigation zones are optional

11:30 – 12:00	Lecture 3: Database structure and preparation
12:00 – 13:00 pm	Soil data preparation
13:00 - 14:00	LUNCH
14:00 - 16:00	Covariates preparation (Land cover, geology, climate, and relief)
15:00- 15:30 pm	BREAK
15:30 - 17:00 pm	Covariates preparation (Remote sensing images)
17:00 – 17:30 pm	Short quiz

Objective:

- (1) To harmonize input data
- (2) To develop spatial maps of EC indicator of salinity (0-30 cm and 30-100 cm)

Requirements:

- (1) Input GIS database (soil EC, predictors, country boundary)
- (2) Installed R, QGIS, spreadsheet software
- (3) Internet connectivity
- (4) Computer (at least i5, 8gb Ram, and sufficient storage)
- (5) Lecture materials

Outputs:

- (1) Harmonized predictors of salinity
- (2) Spatial maps of EC indicator of salinity (0-30 cm and 30 100 cm)
- (3) Spatial maps of uncertainty of EC map
- (4) Documentation of EC map and accuracy assessment

TIME	TOPIC
8:30 – 9:00 am	Registration, Recap of Day 1. Questions and answers
09: 00 - 10:00	Short introduction to mapping software (QGIS and ILWIS)
10:00 – 10:30 am	BREAK
10:30 – 11:30 am	Short introduction to mapping software (R and RStudio)
11:30 - 13:00	GIS database development
13:00 - 14:00 pm	LUNCH
14:00 – 15:00 pm	Spatial Mapping of soil indicators of salinity
15:00- 15:30 pm	BREAK
15:30 - 17:00 pm	Spatial mapping of soil indicators of salinity
17:00 – 17:30 pm	Short quiz

Objective:

(1) To develop spatial maps of pH indicator of salinity (0-30 cm and 30-100 cm)

Requirements:

- (1) Input GIS database (soil pH, predictors, country boundary)
- (2) Installed R, QGIS, spreadsheet software
- (3) Computer (at least i5, 8gb Ram, and sufficient storage) and Lecture materials

Outputs:

- (1) Spatial maps of pH indicator of salinity (0-30 cm and 30 100 cm)
- (2) Spatial maps of uncertainty of pH map
- (3) Documentation of pH map and accuracy assessment

TIME	TOPIC
8:30 – 9:00 am	Registration, Recap of Day 1. Questions and answers
09: 00 - 10:00	Short introduction to mapping software (QGIS and ILWIS)
10:00 – 10:30 am	BREAK
10:30 – 11:30 am	Short introduction to mapping software (R and RStudio)
11:30 - 13:00	GIS database development
13:00 - 14:00 pm	LUNCH
14:00 – 15:00 pm	Spatial Mapping of soil indicators of salinity
15:00- 15:30 pm	BREAK
15:30 - 17:00 pm	Spatial mapping of soil indicators of salinity

DAY 4

Objective: To develop spatial maps of ESP indicator of salinity (0-30 cm and 30-100 cm)

Requirements:

- (1) Input GIS database (soil ESP, predictors, country boundary)
- (2) Installed R, QGIS, spreadsheet software
- (3) Computer (at least i5, 8gb Ram, and sufficient storage) and Lecture materials

Outputs:

- (1) Spatial maps of ESP indicator of salinity (0-30 cm and 30 100 cm)
- (2) Spatial maps of uncertainty of ESP map
- (3) Documentation of ESP map and accuracy assessment

TIME	TOPIC
8:30 – 9:00 am	Registration, Recap of Day 1. Questions and answers
09: 00 - 10:00	Short introduction to mapping software (QGIS and ILWIS)
10:00 – 10:30 am	BREAK
10:30 – 11:30 am	Short introduction to mapping software (R and RStudio)
11:30 - 13:00	GIS database development
13:00 - 14:00 pm	LUNCH
14:00 – 15:00 pm	Spatial Mapping of soil indicators of salinity
15:00- 15:30 pm	BREAK
15:30 - 17:00 pm	Spatial mapping of soil indicators of salinity

Objective:

(1) To develop national soil salinity map

Requirements:

- (1) Salinity indicator maps (0-30 and 30-100cm)
- (2) Salinity classification model
- (3) Lecture materials
- (4) Installed QGIS, R and libraries
- (5) Computer i5, 8 GB ram, sufficient storage

Outputs

- (1) National indicator maps for mapping salinity and uncertainty maps
- (2) Uncertainty map for salinity
- (3) Documentation of salinity map

TIME	TOPIC
09: 00 - 10:00	Recap of Day 4. Questions and answers.
10:00 - 10:30	BREAK
10:30 - 13:00	Soil indicator modelling (ESP 0-30 and 30-100 cm) and uncertainty assessment:
13:00 - 14:00	LUNCH
14:00 – 16:00	Soil indicator modelling (ESP 0-30 and 30-100 cm) and uncertainty assessment:
15:00- 15:30	BREAK
15:30 - 17:30	Soil indicator modelling (ESP 0-30 and 30-100 cm) and uncertainty assessment:

Objective: To contribute to GSS map

Requirements:

- (1) National salinity indicator maps
- (2) Validation statistics
- (3) Sample validation data
- (4) National salinity maps
- (5) Lecture materials
- (6) Internet connectivity

Outputs

Submitted maps, validation statistics, and validation sample set to GSS map

TIME	TOPIC
09: 00 - 10:00	Recap of the course. Questions and answers.
10:00 - 10:30	BREAK
10:30 - 13:00	Submission and Presentation of final maps and reports by participants (alphabetical order of NENA countries) Wrap-up of training program
13:00 - 14:00	LUNCH
14:00 – 17:30	Meeting and discussion between soil and water productivity experts